Engineering Tripos Part IIB, 4M20: Introduction to Robotics, 2021-22

Module Leader

Dr A Prorok [1]

Lecturers

Dr A Prorok, Dr F lida, Dr F Forni, Dr R Harle

Timing and Structure

Michaelmas term, 100% coursework

Prerequisites

3C5 useful; 3C8 useful; 3F2 useful; 3F3 useful

Aims

The aims of the course are to:

- · Introduce fundamentals of robotics
- · Learning technologies and techniques to design, assemble, and control robots
- Hands-on exercises on robot development through projects
- Presentation of research and development

Objectives

As specific objectives, by the end of the course students should be able to:

- Learning different design strategies and architectures of robots
- Design methods of automated complex systems
- Development of simulated complex robots
- Model-based analysis robot performance

Content

Course Syllabus (subject to minor adaptations during course of term):

- 1. Introduction (A. Prorok) -- Oct. 7 (Zoom live-stream)
 - a. Why study robotics?
 - b. The basics of mobile autonomy

Engineering Tripos Part IIB, 4M20: Introduction to Robotics, 2021-22 Published on CUED undergraduate teaching site (https://teaching25-26.eng.cam.ac.uk)

c. History of robotics research
2. Architectures (A. Prorok) Oct. 14 (in-person, West Cambridge Computer Lab LT1)
a. Autonomy and sensor-actuator loops
b. Reactive vs deliberative decision-making (and control)
c. Control architectures
3. Introduction to kinematics (F. Forni and F. lida) Oct. 21 (pre-recorded)
a. Motion models; robots with non-holonomic constraints
b. Kinematics; forward and inverse kinematics
c. Open-loop vs closed-loop control; intro to PID control.
4. Introduction to dynamics (F. lida and F. Forni) Oct. 28 <i>(in-person, West Cambridge Computer Lab</i> LT1)
a. Dynamics models
b. Open-loop and closed-loop control
c. PID control applied to dynamic systems.
5. Perception and Localization (R. Harle) Nov. 4 (in-person, West Cambridge Computer LabLT1)
a. Sensors and sensor models, odometry
b. Maximum likelihood estimation and sensor fusion

c. Noise and belief representation

Engineering Tripos Part IIB, 4M20: Introduction to Robotics, 2021-22 Published on CUED undergraduate teaching site (https://teaching25-26.eng.cam.ac.uk)

d. Bayes rule, Bayes filter, Particle Filter, KF
e. Grid localization and map representations
6. Navigation and Planning (A. Prorok) Nov. 11 (in-person, West Cambridge Computer Lab LT1)
a. Basic concepts
b. Reactive navigation (without a roadmap)
c. Deliberative planning (with a roadmap)
d. Planning in multi-robot systems
7. Multi-Robot Systems (A. Prorok) Nov.18 (in-person, West Cambridge Computer Lab LT1)
a. Introduction to Multi-Robot Systems (MRS)
b. Centralized vs decentralized architectures
c. Collective movement (formations, flocking)
d. Task assignment
B. Introduction to Advanced Robotics (A. Prorok) Nov. 25 (in-person, West Cambridge Computer Lab LT1)
a. Introduction to reinforcement learning methods
b. Model-based vs model-free approaches
c. Open robotics problems

Coursework

The assignments will be 100% coursework and consist of two elements: (1) experimental work using a robot simulator and real robots, and (2) theory / understanding. The exercises will require data collection and analysis. The balance between practice and theory will depend on the exercise topic. Each student will submit a written report. Students will be expected to be able to demonstrate any results reported in their hand-in.

Each assignment will compose 45% of the final mark; the remaining 10% of the mark will be determined by the student's performance in a 1-on-1 viva with either the lecturer or a senior assessor. The mark for each assignment will be determined in part by the score achieved in the written report, and in part by the performance of the student during a questioning session. The lecturers will hold an in-person questioning session.

Deadlines:

Assignment 1: Nov. 1, (noon)

Assignment 2: Nov. 22 (noon)

Viva session 1: Nov. 2, 16:00-18:30 (Location: William Gates Building, Intel Lab)

Viva session 2: Nov. 23, 16:00-18:30 (Location: William Gates Building, Intel Lab)

Coursework	Format	Due date
		& marks
[Coursework activity #1 title / Interim]	Individual Report	
Coursework 1 brief description	anonymously marked	Monday at no
Learning objective:		[45%]
 study basic properties of finite difference methods. learn to use Linux system and Fortran 90 Complete and validate a basic Euler code 		
[Coursework activity #2 title / Final]	Individual Report	Monday at no
Coursework 2 brief description	anonymously marked	[45%]
Learning objective:		
Extend and improve the Euler codeUse it to investigate challenging flows		
Viva		Sessions: No
Location: William Gates Building, Intel Lab		16:00 - 18.30
		[10%]

Booklists

Please refer to the Booklist for Part IIB Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations [2].

Last modified: 04/10/2021 09:15

Source URL (modified on 04-10-21): https://teaching25-26.eng.cam.ac.uk/content/engineering-tripos-part-iib-4m20-introduction-robotics-2021-22

Links

- [1] mailto:asp45@cam.ac.uk
- [2] https://teaching25-26.eng.cam.ac.uk/content/form-conduct-examinations